Premedical - biology

Mitosis and Cell cycle

Physiological modes of somatic cell

proliferation cell cycle

resting cells G0 phase

Proliferation in:

- ontogenesis
- physiological renewal of cells
- reparation and wound healing
- immune response

Resting (Quiescent) Cells: G0

G0 phase relates to terminal stages of differentiation

e.g. hepatocytes divide

1x a year;
neurons, myocytes
do not divide;
epithelial cells divide 1-2x a day

Cell cycle

G ~ Gap/Growth

S ~ DNA sythesis

The cell cycle

- M phase and interphase
- M phase: Mitosis and cytokinesis
- Interphase: G1, S, G2 phase
- 46 chromosomes, 23 chromosomes from each parent
- mitosis distribution of identical sets of 46
 chromosomes to daughter cells 2n / 2n

2n

Cell Cycle

- G1 phase the longest and the most variable part of the cell cycle
 - growth of the cell
 - completion of organelles (ribosomes, mitochondria, endoplasmic reticulum etc.)
 - RNA and protein synthesis
 - synthesis of nucleotides, preparation for replication

- S phase replication of nuclear DNA (extranuclear DNA replicates during the whole interphase)
- G2 phase cell growth, protein and RNA synthesis, origin of cell structures
- M phase:

Mitosis - division of the nucleus

Cytokinesis – division of the cell

Mitosis – animal cells

Interphase: one or more nucleoli. Centrosome replicates to pair of centriolas. Chromosomes have been already duplicated.

Prophase: Chromatin fibers are getting coiled, spiralized.

Nucleoli disappear and microtubuli begin to form mitotic spindle

Prometaphase: Nuclear envelope fragments. Mitotic spindle interacts with chromosomes. Chromosomes are getting more condensated.

Mitotic spindle

- Fibers made of microtubules, spindle starts from centrioles 9 sets of triplets of microtubules from subunits tubulin α , β
- Microtubule organizing center
- Mitotic spindle elongates by incorporating subunits of protein tubulin
- Microtubule polarity

- Kinetochore microtubules
- Non-kinetochor m. (polar)
- Astral microtubules

kinetochor – proteins andchromosomal DNAat the centromere

Nucleosome:

DNA double helix + histone core Histone core = octamer of two copies of H2A, H2B, H3, H4 histons Spacer segment between two nucleosomes is free or associated with H1 histone String of nucleosomes is coiled into **solenoid** (6 nucleosomes in each turn) Solenoid is packed into loops, attached to non-histone protein scaffold (Laemli loops). Non-histone protein scaffold with loops is coiled into spiral structure of chromatids

Metaphase: Spindle poles are at opposite positions.

Chromosome are located on the metaphase plate (in equatorial plane). Each chromosome is attached by kinetochore to the mitotic spindle.

Anaphase: Chromatids move to opposite poles of the cell.

Kinetochore mictotubules are getting shorter, the poles move further apart. There are at the end two collection of chromosomes.

Telophase: Non-kinetochore microtubules elongate. Nuclear envelope generates. Cytokinesis starts to run.

Cytokinesis

Cleavage

- contractile ring of actin microfilaments
- cell plate in plant cells

Cell cycle

- External signals and internal network of interactions – signalling transduction pathways regulate the cell cycle
- Cancer cells have escaped from cells cycle controls

Check points

trigger and coordination of key events

Checkpoints are critical points, where signals can stop or go-ahead to the next phase of cell cycle:

G1 checkpoint G2 checkpoint M checkpoint

Control system of cell cycle

- Cyclin cyclic accumulation and degradation of proteins during the cell cycle
- Cdk cyclin dependent kinases (CDK)
 - = enzymes that phosphorylate other proteins in active states
 - = activation by cyclin

complex cyclin / kinase => protein phosphorylation =>
triggers cell cycle phases

Signal transduction pathways – proliferation, apoptosis

Genes regulating cell cycle:

Protooncogenes

- products stimulate cell division
- Genes for growth factors, receptors, regulatory proteins, Ras proteins
- mutated forms = oncogenes => permanent or increased mitotic activity
 (effect of one allele mutated)

Tumor suppressor genes (TSG) "antioncogenes"

- products inhibit mitotic division
- effect of both alleles mutated

- Rb1 gene, product RB protein
 - Mutations in retinoblastom and other tumors
- TP 53 gene, p53 product induction of DNA repair or apoptosis = programmed cell death
- mutations in many tumors

Carcinogenesis

Mutator genes – genes for reparation enzymes

Proteins encoded by proto-oncogenes and tumorsuppressor genes are components of cellsignalling pathways.

Multistep model of cancer development

Physiological modes of somatic cell

proliferation cell cycle

resting cells G0 phase

Proliferation in:

- ontogenesis
- physiological renewal of cells
- reparation and wound healing
- immune response

Aging (senescence)

■ limited number of cell division (maximum 50) →

Hayflick's limit

both in vivo and in vitro

- accumulation of mutations
- decreased cytokines response, increased synthesis of inhibitory proteins
- shortening of telomere sequences at the ends of chromosomes

Apoptosis = programmed cell death

- final stage of aging process in the cell
- elimination of cells, which can not be repaired
- during embryogenesis reduction of redundant parts
- some diseases
- Purpose: elimination of cells, that accomplished their fate and could become destructive for the organism

Apoptosis:

- without disintegration of both plasma membrane and organelles
- chromatin condensation, surface blebbing, cell fragmentation → apoptotic bodies
- phagocytosis without inflammation

Necrosis:

disruption of plasma membrane and organelles, release of the cell content into extracellular space → inflammation

Caspases

are a family of cysteine
proteases that play essential
roles in apoptosis
(programmed cell death),
necrosis, and inflammation

(A) ACTIVATION OF APOPTOSIS FROM OUTSIDE THE CELL (EXTRINSIC PATHWAY) killer lymphocyte Fas ligand Fas protein aggregation activated and cleavage of caspase-8 adaptor procaspase-8 protein molecules CASPASE CASCADE inactive apoptotic procaspase-8 target cell target cell (B) ACTIVATION OF APOPTOSIS FROM INSIDE THE CELL (INTRINSIC PATHWAY) cytochrome c (in intermembrane space) adaptor protein

Molecular Biology of the Cell. 4th edition.

Alberts B, Johnson A, Lewis J, et al.

New York: Garland Science; 2002

Signal transduction pathways – **Proliferation**, apoptosis

Thank you for your attention

Campbell, Neil A., Reece, Jane B., Cain Michael L., Jackson, Robert B., Minorsky, Peter V., **Biology**, Benjamin-Cummings Publishing Company, 1996 – 2010.

